24.04.2017

Neue Publikation: Correcting Measurement Error in Content Analysis

Marko Bachl, Michael Scharkow

Conducting and reporting reliability tests has become a standard practice in content analytical research. However, the consequences of measurement error in coding data are rarely discussed or taken into consideration in subsequent analyses. In this article, we demonstrate how misclassification in content analysis leads to biased estimates and introduce matrix back-calculation as a simple remedy. Using Monte Carlo simulation, we investigate how different ways of collecting information about the misclassification process influence the effectiveness of error correction under varying conditions. The results show that error correction with an adequate set-up can often substantially reduce bias. We conclude with an illustrative example, extensions of the procedure, and some recommendations.


Bachl, M., & Scharkow, M. (2017). Correcting Measurement Error in Content Analysis. Communication Methods and Measures, 11(2), 87–104. https://doi.org/10.1080/19312458.2017.1305103

Zeit, um zu entscheiden

Diese Webseite verwendet externe Medien, wie z.B. Karten und Videos, und externe Analysewerkzeuge, welche alle dazu genutzt werden können, Daten über Ihr Verhalten zu sammeln. Dabei werden auch Cookies gesetzt. Die Einwilligung zur Nutzung der Cookies & Erweiterungen können Sie jederzeit anpassen bzw. widerrufen.

Eine Erklärung zur Funktionsweise unserer Datenschutzeinstellungen und eine Übersicht zu den verwendeten Analyse-/Marketingwerkzeugen und externen Medien finden Sie in unserer Datenschutzerklärung.