Cross-industry innovation in data generation and analysis – How can it be accessed and utilised in times of digitalisation?
Abstract

The purpose of this paper is to examine how foreign industry knowledge can be accessed and utilised in times of digitalisation with the help of cross-industry methods, in order to enable innovation with respect to data generation and analysis. This paper conducts a qualitative research study by performing two different workshops with students from Zeppelin University. Testing two different approaches that stimulate a ‘problemistic search’ in order to facilitate creativity, this paper combines Gassmann & Zeschky’s (2008) theory of analogical thinking with elements of the Osborn method. Results show that creating enough space for abstracting a problem or product is vital to be creative and, thus, strongly helps to come up with new and innovative ideas. Furthermore, producing analogies beforehand without introducing a predefined problem highly contributes to the effectiveness and efficiency of the Osborn method. Based on these insights, this paper suggests further qualitative research with respect to this method combination, as the mutual impact of both on each other as well as their common impact on cross-industry innovation has mostly been ignored in today’s literature so far.
Table of contents

Abstract .. II

1 Introduction .. 1

2 Theory Foundations ... 2
 2.1 Analogical Thinking .. 2
 2.2 Osborn Checklist .. 3

3 The Workshop ... 5
 3.1 Theoretical Methodology .. 5
 3.2 Practical Example: Two Workshops .. 6
 3.2.1 Group A ... 7
 3.2.2 Group B ... 7
 3.3 Limitations ... 9

4 Conclusion .. 10
1 Introduction

Digitalisation and the explosion of data generation are the cause of deep and large-scale transformations across industry and business organisations, opening up new opportunities for value creation, as well as being a source of unprecedented risk. In an article for TechCrunch in 2015, Tom Goodwin, the senior vice president of strategy and innovation at Havas Media, reveals the impact digitalisation is having on business today by stressing the phenomenon of Uber and Facebook, both representing best examples of digital business models: “Uber, the world’s largest taxi company, owns no vehicles. Facebook, the world’s most popular media owner, creates no content.” (Goodwin, 2015). Recently, both companies are challenging traditional ways of doing business enormously, leading firms to rethink their business models.

The digital process is, thus, dramatically changing the nature of business and highly impacts the organisation of industry’s value chains. Innovative firms that are able to digitally transform their whole process of value creation and efficiently introduce new digital technologies seem to have a huge competitive advantage to firms that cleave to their traditions (see Kreutzer & Land, 2015). What makes both, Uber and Facebook, most valuable is their vast amount of data they continuously generate and analyse.

Therefore, in times of digitalisation, competitive advantage arises from generating vast amounts of data everywhere at any time at a record rate. However, generating data does not automatically result in the creation of new knowledge and, thus, new business opportunities. Presently, heavy discussions are going on about the question how to analyse big data efficiently in order to transform it into valuable knowledge (see Iafrate, 2014). Big data has to be analysed and utilised in order to become smart and usable, leading companies to face a big challenge.

In addition, Nadkarni and Narayanan (2004) state that the process of digital transformation dramatically diminishes innovation cycles in size, causing business to become increasingly more uncertain, complex and turbulent. Firms’ external environment becomes less predictable, forcing organisations to increase their degree of creativity. Consequently, in order to keep pace with digitalisation, continuous innovation processes are pivotal. Cross-industry innovation in particular may contribute significantly to the development of radical innovation, while simultaneously reducing the risk of uncertainty.

This paper contributes to the existing literature on digitalisation and cross-industry innovation by asking the question how can foreign industry knowledge be accessed and utilised in times of digitalisation with the help of cross-industry methods, in order to enable innovation with respect to data generation and analysis? Thereby, this paper makes use of Gassmann & Zeschky’s (2008) theory on analogical thinking and the Osborn method. While the use of analogies aims at abstracting the problem
at hand and, thus, opens the mind for creative thinking in problem solving, the Osborn method further helps structuring people’s thought processes. Thus, the combination of both gives incentives for generating new ideas and, finally, paves the way to come up with new solutions. Testing two different approaches of this method combination that stimulate a ‘problemistic search’, the authors conducted two workshops with students from Zeppelin University. This paper shows that producing space for abstraction and deliberative search is pivotal for increasing creative and, thus, innovative potential. Furthermore, this paper states that creating analogies is associated with the success of the Osborn method, when predefined problems are avoided.

First, this paper reviews the relevant literature on analogical thinking and the Osborn method. This part partly focuses on theories that investigate how firms can successfully enable and use analogical thinking in order to improve their innovative potential. Furthermore, this part outlines the theoretical background of the Osborn method, by analysing its mechanisms for facilitating creative thinking. Second, based on the former part, this paper examines how both workshops should be constructed and conducted in order to test this paper’s hypotheses. Third, the actual conduction and generated results of both workshops at Zeppelin University are described. Fourth, both workshops are critically assessed and limitations of this study are discussed, before the conclusion summarises this paper’s main findings.

2 Theory Foundations

2.1 Analogical Thinking

Features of innovations do not have to be novel by nature. On the contrary, innovation may contain characteristics and elements from existing knowledge that has been only reutilised in a different setting. Often an innovation might be perceived as novel due to the fact that is has been put in a new context. Hence, transferring information from a similar setting and utilising it in order to solve a problem in a new setting highly contributes to the process of innovation. Interestingly, as a result, knowledge from foreign industries becomes strongly valuable, when converted into analogies. But how and where do firms find cross-industry knowledge in the first place? And how to make valuable use of it, once it has been found?

According to (Gassmann & Zeschky, 2008) analogical thinking represents a creative method for a problem that searches for a solution. Whether there exists a solution in one industry that can be applied to solve a problem in another industry or there is a solution found looking for a problem – both directions may contain successful problem-solving strategies for firms to radically innovate. Hence, finding similarities of both – problems and solutions – may be vital for cross-industry innovation.

Gassmann & Zeschky (2008) further distinguish between near and far analogies. Whereas near analogies consists of obvious surface similarities, far analogies are akin in a more structural sense. Far analogies are more difficult to identify, as their similarities are more hidden. Thus, in order to identify far
analogies more cognitive effort is required. However, according to (Thagard & Holyoak, 1995), this extra cognitive effort mostly pays off, as it may lead to radical innovation. Radical innovations include substantially new technology and, thus, offer higher customer need fulfilment (Sorescu, Chandy, & Prabhu, 2003).

By conducting a qualitative two-year case study project with a sample of 18 case firms, (Gassmann & Zeschky, 2008) show that the identification of an analogy mainly depends on exploring the problem structure at hand and introducing a deliberative search for analogous solutions. Only finding an analogy seems not to be efficient when searching for structural analogies. Additionally, firms need a strategic and systematic effort in order to successfully adapt the existing knowledge to the new one. They need to be open-minded and have the will to question own products and technologies. More importantly for our research, enabling and making use of analogies requires a stimulation of the people’s cognitive abilities. Thus, first, they need to abstract their problem in detail. This detailed problem analysis consists of an in-depth research concerning the product’s technical and contextual functions. The firm needs to delve into the substantial technological function of the product, thereby revealing original and true customer benefits of the product at hand. While exploring the structural functions of the problem and the problem’s purpose, the original problem might increasingly take a backseat. Instead, cognitive abilities become activated and space for potential new solutions can be created.

2.2 Osborn Checklist

To say it in the words of Chauncey Suits, a former head of General Electric Research: “Everyone has some hunches. […] No one is wholly without some spark. And that spark, however small, is capable of being blown on until it burns more brightly.” (Osborn, 2009, p. 8) This quotation emphasises that everyone has the potential of being creative. Everyone possesses this potential to a different extent, but it can be enlarged by effort. It only needs to be activated and to be trained regularly to strengthen the ability to be creative. Further, people use their potentials more efficiently when facing the right environment. For example, a football team may be able to beat an even more skilled team when motivated by the cheers of thousands of fans. As a consequence, in order to be creative, right surroundings need to be set. Obviously, proper concentration represents a prerequisite in order to foster one’s ability to create. One’s attention has to be directed towards the problem faced. Consequently, in order to execute creativity, there has to be both the intent and the effort to be creative (Osborn, 2009). According to Jack London, “You can’t wait for inspiration, you have to go after it with a club.” (London, 1903)

Given that framework, the Osborn Checklist is a tool for creative thinking and creative problem solving. Alex Osborn is commonly known as a creative theorist coming from an advertisement background. He is claimed to be the ‘father of brainstorming’. In addition, he further developed the brainstorming technique and came up with the Osborn Questionnaire in the mid-20th century.
Osborn Questionnaire often termed Osborn’s Checklist is a more structured form of brainstorming through a sequence of questions (Osborn, 2009). In the following parts, this paper uses both terms simultaneously. First of all, for the usage of the method to be successful, following requirements have to be met:

- **Time**: Participants should not be pressured too much. Time pressure may prevent the creativity to develop (Osborn, 2009).

- **Pen and note-pad**: Writing down ideas helps finding even more ideas, as the simple process of writing down automatically inspires the mind and makes it open for new ideas to come (Osborn, 2009, p. 26)

- **No fear of punishment**: If there is a fear of punishment, there is no room left for the creative potential to grow (Osborn, 2009, p. 36).

- **Deadlines**: More precisely, time pressure leads to stress. Hence, giving enough time to avoid pressure is highly recommended for participants to be creative. However, deadlines might also be important in order to stimulate creativity (Osborn, 2009, p. 41).

- **No judgment of ideas**: While being in the creative phase, judgment is misplaced. There is time for an evaluation of the ideas once the creativity phase is completed (Osborn, 2009).

- **Encourage the participant**: Self-discouragement represents a fundamental principle. Due to the fear of being different or outstanding in a negative way, people hold back their ideas. Therefore, the group members need external encouragement and fears to fail needs to get removed (Osborn, 2009, p. 48)

Once the requirements are understood by the participants, the Osborn Checklist can be conducted. In order to perform the method purposefully, there needs to be a previous goal definition (Osborn, 2009). The process of the questionnaire is determined by nine questions, which need to be answered. Those questions will be displayed in the following table.

<table>
<thead>
<tr>
<th>Put to other uses</th>
<th>New ways to use as it?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adapt</td>
<td>What else is like this? What could I copy?</td>
</tr>
<tr>
<td>Modify</td>
<td>New twist? Change meaning, motion, form?</td>
</tr>
<tr>
<td>Minify</td>
<td>What to subtract? Smaller? Miniature? Lighter?</td>
</tr>
<tr>
<td>Magnify</td>
<td>What to add? More time? Duplicate? Longer?</td>
</tr>
<tr>
<td>Substitute</td>
<td>Who else instead? Other ingredient? Other approach?</td>
</tr>
<tr>
<td>Rearrange</td>
<td>Other sequence or pattern? Other layout?</td>
</tr>
<tr>
<td>Reverse</td>
<td>Turn it upside down? Turn tables?</td>
</tr>
<tr>
<td>Combine</td>
<td>How about a blend? Combine units or ideas?</td>
</tr>
</tbody>
</table>

Table 1 - Osborn’s Checklist (Osborn, 2009, pp. 77-95)

After going through all different questions of the checklist, a number of new ideas should be generated. An evaluation of those ideas is inevitable as a subsequent step in the process of finding the final idea.
3 The Workshop

3.1 Theoretical Methodology

As described previously in chapter Fehler! Verweisquelle konnte nicht gefunden werden., the Osborn Checklist is very well-suited when searching for new ways to find solutions for problems. The objective of the method is to direct the creative potential of a group towards different areas or industries. The Osborn Checklist helps to systematically look for potential modifications of a product or process. By following the Osborn Checklist the group is prevented from stopping the idea creation process because of being satisfied too early with a solution that might not be the perfect fit.

Before conducting the workshop, the responsible person (moderator) needs to identify the goals for the upcoming workshop. A good aim is necessary to start the project and helps focusing during the workshop. This can already be the first hurdle that needs to be overcome, since thinking up what we are going to try to think up might just be as difficult as finding solutions to an existing problem (Osborn, 2009). In order to do so, question such as: „What do we want to solve?“, „What kind of problems do we have?“ or „Who needs to be in the workshop to be successful?“ etc. must be answered.

Using the Osborn Checklist can produce numerous ideas about a given central question or problem. That is why the Osborn Checklist by itself might not be the ideal tool to use when starting at zero. In order to find a central question, there are different approaches to set up a workshop.

One way to conduct a workshop could be that the moderator introduces a predefined problem, which then should be solved by the group. The workshop should start with a short introduction to the problem and its origins. By doing so, the focus of the group is already guided towards a certain direction and is given a specific mind set. According to the problem, the group is asked to find analogies across different industries which then can be transferred to the problem by using the Osborn Questionnaire.

A further approach to use the Osborn Questions within a workshop could be to start without a predefined problem, but directly beginning with searching for analogies from different industries within a given topic and thereby benefitting from the cross industry innovation approach. These analogies can then be linked back to the context of the company by using the Osborn Checklist. Due to time constraints, the focus should lay on the most promising analogy. If more time is available, it is also possible to examine more than one analogy.

Overall it can be said, that ideas should not be evaluated or discussed during the brainstorming process to encourage maximum creativity. At the end of each approach, the moderator should present all solutions generated and all ideas can be evaluated regarding their feasibility and their potential to be successful.

To give a quick and better understanding of the two approaches, the structure could be determined as follows:
Approach 1:
1. Introduction of Problem (1-2 min)
2. Find analogies from other industries (5 min)
3. Start with Osborn Questions (approx. 2-3 min per question) to link to specific problem
4. Recall all gathered ideas (2 min)
5. Evaluate ideas within group (5 min)

Approach 2:
1. Find analogies from other industries (5 min)
2. Reach a consensus on one or more analogies to proceed with
3. Start with Osborn Questions (approx. 2-3 min per question) to link to your company
4. Recall all gathered ideas (2 min)
5. Evaluate ideas within group (5 min)

The workshop length can be adapted to the specific problem you want to solve. It can vary in length, but our suggestion is to schedule it to 30-60 minutes.

In principle, a good workshop group should consist of eight to twelve persons plus an additional moderator and one person assisting the documentation of the findings. Although the size of the group can be very flexible, it should not be too large, since the chance of members remaining in the background as well as not having enough time to express their ideas and thoughts gets greater with the group size. To conduct a successful workshop, little preparation and material such as a whiteboard and pens are needed.

3.2 Practical Example: Two Workshops

The workshop was executed by students from the class Knowledge Management supervised by Professor Dr. phil Ellen Enkel at Zeppelin University in Friedrichshafen. In order to test our hypotheses, we decided to divide the participants into two groups with each consisting of 12 persons. Two moderators had a total of 20 minutes to go through the prepared workshop.

Both groups were dealing with data generation and data analysis and with finding solutions for problems in the field of automotive companies. Both groups were formed by the moderators in accordance with this paper’s methodological approaches, which have been introduced in part two. Group A was confronted with a very narrow task starting with a concrete and predefined problem. The participants of Group B, on the other hand, were encouraged to find analogies in the field of smart data to get a broader overview. Hence, in order to test different approaches combining analogical thinking with the Osborn Questionnaire, we chose to conduct two distinguished workshops.
3.2.1 Group A

The moderator of Group A was instructed to begin by introducing a specific problem to the participants. By mentioning that finding parking lots in big cities is becoming increasingly difficult, the respective moderator introduced a predefined problematic situation to his experimentees. As a consequence, time to park cars in big cities represents quite a challenge for drivers with a clear upward tendency leading to increased pollution that could otherwise be avoided. The moderator asked the question whether participants know any analogies that describe the situation. After giving the group members enough time to come up with ideas, he continued by going through the questions from the Osborn Checklist.

The first questions enabled the participants to engage in abstractive thinking. Beginning with the quite narrow problem of finding analogies for solving the parking lot problem, there seemed to exist a thinking barrier. Engagement in the discussion remained relatively slow with no further generation of ideas. Hence, the moderator was forced to bring in new ideas by himself. The Osborn Questions intended to adapt, to reverse and rearrange seemed not to stimulate further questioning, rethinking and deliberative searching and the questions aiming at modifying and magnifying could not be answered at all. The duration of the workshop was 20 minutes.

<table>
<thead>
<tr>
<th>Tasks</th>
<th>Answers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Find analogies</td>
<td>RFID chips in cars, shopping habits on the Internet, airplanes in the sky</td>
</tr>
<tr>
<td>1. Adapt</td>
<td>Parking-leading services, informing lights in parking garages, statistical observations about the occupancy, radio broadcasts, informing applications on the smartphone/in the car</td>
</tr>
<tr>
<td>2. Modify</td>
<td>-</td>
</tr>
<tr>
<td>3. Minify</td>
<td>Observe common queues</td>
</tr>
<tr>
<td>4. Magnify</td>
<td>-</td>
</tr>
<tr>
<td>5. Combine</td>
<td>With sensors around the lightning systems (as well as traffic lights)</td>
</tr>
<tr>
<td></td>
<td>With public transportation (busses, taxis)</td>
</tr>
<tr>
<td>6. Substitute</td>
<td>Use unutilised parking places of people living in the city</td>
</tr>
<tr>
<td>7. Reverse</td>
<td>Give the key to somebody else, not stop driving</td>
</tr>
<tr>
<td></td>
<td>let the car drive around by itself or park outside the city</td>
</tr>
<tr>
<td>8. Rearrange</td>
<td>Car-sharing, more drive-through options</td>
</tr>
<tr>
<td></td>
<td>(university lectures in the car, drive-in cinemas)</td>
</tr>
</tbody>
</table>

Table 2 - Answers of Group A

3.2.2 Group B

The Moderator of Group B was instructed to first find analogies by asking where Smart Data is used in our daily lives. After having brainstormed, participants voted for the most promising smart data usage, which turned out to be the setting of cookies for personalised online advertisement. Afterwards, the moderator linked the voted smart data usage to the company of Volkswagen, by asking the question of how smart data could improve processes for the automotive manufacturer. The second part of the workshop was to go through the Osborn Checklist concerning the implementation of the respective
smart data usage inside the Volkswagen Firm. Thereby, the original smart data usage was changed in order to transfer it into valuable knowledge alias an analogy and creating a new product or service innovation or innovative organisational solution.

The discussion that evolved in Group B was from the beginning on very lively. After many suggestions a discussion started about what Smart Data actually is. Participants interrupted themselves by mentioning new ideas. Giving the group a wide range of thoughts to think about, they had a lot of references to talk about. Although at some points, the moderator had to bring the discussion back to the topic of Smart Data. The answers to the Osborn Checklist were numerous. After 26 minutes the moderator closed the discussion, skipping question seven and eight of the Osborn Checklist due to time constraints.

<table>
<thead>
<tr>
<th>Tasks</th>
<th>Answers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Find Smart Data examples</td>
<td>IPhone, personalised Facebook-advertisement through the introduction of cookies, national security, System to foretell burglary, movements, Systems that analyse facial expressions, Netflix movie proposals, gym measurements, Duolingo.com, Insurance Data, GPS tracking, Facebook-friends-suggestions</td>
</tr>
<tr>
<td>Smart Data for VW</td>
<td>Improve employee-networking, build teams based on their preferences, monitor working times, find social junctions to discover dynamics in teams, personalized tracking with health-insurance, personal safety with autonomous driving</td>
</tr>
<tr>
<td>1. Adapt</td>
<td>Collect location-tracking-data of drivers, personalized car offered based on personal behaviour, analyse specific characteristics of target groups, connect Facebook to the car, advertisement based the locations you pass while driving</td>
</tr>
<tr>
<td>2. Modify</td>
<td>Monitor how drivers use the instruments in the car with sensors to improve the users behaviour</td>
</tr>
<tr>
<td>3. Minify</td>
<td>Not track everything, just the most valuable data, spot people that have unusual driving habits</td>
</tr>
<tr>
<td>4. Magnify</td>
<td>Analogy of iBeacons for the car, save information in big data pool, let customers decide how many data they want to share, offer small incentives for driving behaviour information</td>
</tr>
<tr>
<td>5. Combine</td>
<td>Inform people that need to take medicine, let people work together that have similar habits,</td>
</tr>
<tr>
<td>6. Substitute</td>
<td>Questionnaires, Siri for the car, conversations are being recorded and analysed</td>
</tr>
<tr>
<td>7. Reverse</td>
<td>-</td>
</tr>
<tr>
<td>6. Rearrange</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 3 - Answers of Group B
3.3 Limitations

Conducting the workshop, we came across some interesting facts regarding the potential of the methods in use. Group A (the group that started with a given problem) had difficulties finding analogies in the beginning and we did not have enough time to think about more analogies. This constituted the first limitation of the workshop. By already giving the workshop participants a predefined problem, it seems harder to abstract the problem. As (Dahl & Moreau, 2002) state, more ideas will come to mind, if the problem is not clearly defined. You can think of abstraction like climbing a mountain, the more you abstract the problem the higher you get. And from the top of the mountain you will have the best overview. So this paper concludes, that the more abstraction stages are undertaken, the better results will arise during the workshop.

Another way to solve the problem of a rather slow start into the workshop could be to give the participants time to find analogies before the workshop. This way, participants are better prepared and might be able to start right into the creative part of the workshop. Since analogic thinking is the basic mechanism underlying creative tasks and is used in the construction of new ideas, this paper believes that if participants are given some time to find analogies before, the workshop will be more successful.

In the workshop we conducted, most of the participants were management students, people with similar background and knowledge base. According to (Sutton, 1997) product design firm IDEO believes, that the more knowledge bases get tapped into during a brainstorming session, the more original the product will be. In order to get the best results from a workshop, this paper suggests to have participants from various backgrounds. When experiencing a thinking barrier in the flow of ideas (as happened within Group A), it is crucial that the moderator has good knowledge of the method and possibly good knowledge of the subject to guide the participants through the questions.

Applying the Osborn method does not seem to work, when starting at point zero, as it will only allow you to alternate an existing idea to fit your needs (Osborn, 2009). This paper recommends using our method only, if a problem or process exists within your company, because it will not enable you to reinvent the wheel, but rather is a tool to enhance it.

Osborn believed that creativity lives inside every person, it needs only to be enabled. At the same time, finding ideas, coming up with new solutions needs training. So this paper suggests to have regular brainstorming sessions, or other creativity sessions, in order to unfold the full potential in every group member.
4 Conclusion

According to Perez-Freije & Enkel (2007), the extent to which a firm needs to foster creativity highly depends on the dynamics of its respective industry. Firms operating in times of digitalisation today need to keep pace with data generation and analysis in order to remain competitive. The challenge to make vast amounts of big data smart and valuable for one’s corporation often appears as a non-transparent task, as for many traditional companies big data seems to be impalpable. As a consequence, transferring knowledge and best practices already being established in foreign industries seems vital in order to strengthen one firm’s innovativeness and, thus, its competitive advantage in the age of digitalisation.

Hargadon & Sutton (1997) state that combining completely foreign knowledge contributes to a firm’s potential to innovate radically. Simultaneously, uncertainty might be reduced, as introducing a solution to a problem in a similar setting indicates that the potential solution has already been applied in practice in an akin environment. Thus, experience from another industry needs to be utilised.

This paper aimed at investigating how cross-industry innovation in the age of digitalisation can be fostered by accessing distant pieces of knowledge, thereby increasing innovative potential with respect to data generation and analysis? By making use of Gassmann & Zeschky’s theory of analogical thinking and the Osborn method, this paper combines two creativity methods. Already pointed out by De Bono (1990) analogies play an important role in creative thinking when solving a problem. Hence, connecting elements of analogies (e.g. abstraction and deliberative search) with features of the Osborn Checklist, this paper highly contributes to the existing literature of cross-industry innovation and knowledge management.

The authors constructed and conducted two workshops intending to test this paper’s hypothesis that both methods perfectly fit together in order to increase innovative potential in smart data. Additionally, two different approaches were designed for the workshops. As analogies might be found in two directions – a solution searching for a problem or a problem looking for a solution – both workshops stimulated “problemistic search” (Cyert & March, 1992) in two different manners.

Whereas the former workshop’s discussion only began quite slowly, participants in the latter workshop came up with new ideas relatively fast. This might be the case because the former group was given more space for abstracting the problem, whereas the latter group had to handle with a predefined problem from the beginning on. Furthermore, the heterogeneity of participants was quite small, reducing a potential interdisciplinary advantage. This paper concludes that the level of potential abstraction is associated with the generation of new ideas, leading a group to be more creative. Consequently, this paper’s hypotheses can be verified. In addition, this paper strongly recommends further qualitative research studies in relation to the Osborn method combined with analogical thinking, as this paper’s
sample appears to be very small in order to present valid results. Time constraints while conducting the workshop further reduced this research's significance.
List of tables

Table 1 - Osborn´s Checklist .. 4
Table 2 - Answers of Group A.. 7
Table 3 - Answers of Group B.. 8
Bibliography

Declaration of honour

We herewith swear that this submitted term paper entitled ‘Cross-industry innovation in data generation and analysis – How can it be accessed and utilised in times of digitalisation?’ were authored solely by us without any outside help. Additionally, no other sources were used except those in the bibliography.

Parts of this paper - which also include tables, charts, graphs, figures, and the alike - that have been taken either verbatim or paraphrased with the same meaning from other works have in each case been properly cited with regard to their origin and authorship. This paper either in parts or in its entirety - be it in the same or similar form - has not been submitted to any other examination body and has not been published.

Friedrichshafen, May 10, 2016

Gero Vogt

Jakob Engelbach

Maximilian Rüb

Milena Reichert

Christian Feidner